AD-AL19 675

UNCLASSIFIED

UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DEL REY INFO=-ETC F/6 9/2
PROGRAM DEVELOPMENTS: FORMAL EXPLANATIONS OF IMPLEMENTATIONS.(U)
AUG 82 D S WILE - NSF=MCS79-18792
1SI/RR=81-99 . NL

S

ISI/RR-82-99
August 1982

David S. Wile

SlIM 'S piAeQ

Program Developments:
Formal Explanations of Implementations

<\
(2.‘“,;_;:; 2
Q 22 -
: g

AD A119675

sudnBuawsidw) jo suoieue|dxy jews0d Ssjuswdoeasq weuboig

INFORMATION SCIENCES. INSTITUTE

OTIC FILE COPX

4676 Admiralty Way/ Marina del Rey/ California 90201
UNIVERSITY OF SOUTHERN CALIFORNIA (203)822:1511

r!'

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT _ACGESSION 3. RECIPIENT'S CATALOG NUMBER
ISI/RR-81-99 é d”
4. TiTLE (and Subtitie) S. TYPE OF REPORY & PERIOD COVERED
Program Developments: Research Report

rmal i f i
FO a Explanat ons o 'mplementat‘ons 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
David S. Wile MCS-7918762

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::221“‘4’054.EME:‘TT.NPROJEEﬂCsT, TASK
USC/Information Sciences Institute K UNIT NUMB
4676 Admiralty Way
Marina del Rey, CA 90291

1. COFTROLLIN‘G QFFICE NAME _AND ADDRESS 12. REPORT DATE
National Science Foundation August 1982
1800 G St. N.W. 3. NUMBER OF PAGES
Washington, D.C. 20550 51

14, MONITORING AGENCY NAME & ADORESS(I! different from Controliing Office) §5. SECURITY CULASS. (of this report)

Unclassified

18a, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thia Report)

This document is approved for public release and sale; distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

t8. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae side !f necessary and identily by block numbes)

program design, program development, program optimization, program transformation,
programming environments, replay, structure editors

20. ABSTRACT (Continue on reverse side if necesaary and Identity by block number)

(OVER)

Db ,jf:'f,, 1473 ECITION OF | NOV 83 13 OBSOLETE Unclassified
S/N 0102-014- 6601

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Bntered)

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT

P>Automated program transformation systems are emerging as the basis for a new programming
methodology in which high-level, understandable specifications are transformed into efficient
programs. Subsequent modification of the original specification will be dealt with by
reimplementation of the specification. For such a system to be practical, these reimplementations
must occur relatively quickly and reliably, in comparison with the original implementation. We believe
the reimplementation requirement necessitates that a formal document--the program
development.-be constructed during the development process to explain the resulting
implementation to future maintainters of the specification. The overall goal of our work has been to
develop a language for capturing and explaining these deveiopments and the resulting
implementations. This language must be capable of expressing: the implementor’s goal structure, all
program manipulations necessary for implementation and optimization, and plans of such
optimizations. In this report, we discuss the documentation requirements of the development process
and then describe a prototype system for constructing and maintaining this documentation
information. Finally, we indicate the many remaining open issues and the directions to be taken in the
pursuit of solutions.

/V\

\

 ——— e

. hocess] on For ’
CITIS QRARI o

| pric 1as r
Unanmounced S
Justitication ___

e —————————

By .]
_Distribution;
whifellabllity Codey
‘AvALl angsor
vpeeinl

mend

—

Di=t

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

ISI/RR-82-99
August 1982

David S. Wile

Program Developments:
Formal Explanations of Implementations

INFORMATION SCIENCES INSTITUTI

4676 Admiralty Way/ Marina del Rey[California 90291
UNIVERSITY OF SOUTHERN CALIFORNIA (213)822-1511

This research was supported by the National Science Foundation under Contract No. MCS-7918792. Views and conclusions contained
in this report are the author's and should not be interpreted as representing the official opinion or policy of NSF, the U.S. Government,
or gny person or agency connected with them.

B O L L P

o g A AT iR, 6 SR (e (BN o A S

&

CONTENTS

1. INTRODUCTION: TRANSFORMATIONAL IMPLEMENTATIONcoel

2. DEVELOPMENT LANGUAGE PROPERTIES.t i cne et
3. OURDEVELOPMENT LANGUAGE i i it e ettt et iaan e
3.1. Definition and Refinement i i i e e
B2, G0a) StUCIUIES . . ittt i e e e s
3.3. Relationghip with the Program Manipulation System.
3.4. Operational INterpretation e e e

4. THE DEVELOPMENT PROCESS ... ottt e e e e e e e e
4. A Priori ExXplanation e e e e
4.2, A Posteriori EXpIanation. e e

8. REPLAY OF DEVELOPMENT S . .. i e et e i e s
5 UNEXPEC B EITOrS . o it e
B 2. UNIENOME ErTOrS . . . o e e

6. THE UNDERLYING PROGRAM MANIPULATION SYSTEM: POPART
7. STRUCTURES EXPRESSED IN THE PADDLE LANGUAGE i,
7.1, Global CoOMMANAS. . . . ot e e e
7.2, SIMPIfICAtONS e e e
7.3.C0NAIIONING
7.4. The Development Process: ASimpleExample it
7.5. Text Compression: An Extended Example Development.

8. PROBLEMS AND FUTURE RESEARCH e i
8.1. A Separate Goal StrUCIUIE e
8.2, Styles to SUPPOrt MaINIENANCE oot i e e e
8.3. Genernc Transformations e
8.4. Increased AULOMAtiON e e
8.5. Developments in Other DOMaINs. i i

. POPARTEDITOR SAMPLE TRANSCRIPT i e
ifl. SAMPLE DEVELOPMENT TRANSCRIPT i
. THE DEVELOPMENTOF ATEXTCOMPRESSOR....... ...
iV. THE APPLICATION OF THE DEVELOPMENT TO THE SPECIFICATION: "REPLAY".
V. GLOBAL COMMAND DEFINITIONS.
VI SIMPLIFICATIONS . e e e

VI, DEVELOPMENT LANGUAGE GRAMMAR

BIBLIOG R APHY . e

udlins. ..

NN N

ACKNOWLEDGMENTS

Many thanks to Bob Balzer, Steve Fickas, Susan Gerhart, Neil Goldman, and Bill Swartout for their
helpful comments on early drafts of this report. | would afso like to thank Martin Feather and Phil
London for helping to debug the Paddie system (as guinea pigs, of course). Most of the ideas in this
report arose from discussions with these individuals and Don Cohen and Lee Erman. Thanks to
Nancy Bryan for her critical corrections to the final draft of this report. And finally, particular thanks
to a CACM referee who suggested major structural improvements to this report.

L. INTRODUCTION: TRANSFORMATIONAL IMPLEMENTATION

The programming paradigm considered here involves implementing a very high-leve! specification
through the use of correctness-preserving transformations. The implementor--a psrson.-
chooses different transformations on the basis of his knowledge of the domain in which the program
will ultimately run and his knowledge of their appropriateness. The computer actually applies the
transformations and displays the results so he can then consider further transformations.

These transformations accomplish two separate tasks [Neighbors 80): implementation--selecting
realizations of abstract constructs in terms of more concrete ones, and optimszation--rearranging a
set of operations so as to minimize their execution cost. To get around the confusion between
implementation of the specification and optimization of the implementation in the programming
language, it has become common to talk simply of "optimization of programs"” in a "wide spectrum
language” [Bauer 81]. Such a language encompasses both specifications and programs. To do so,
every construct must be operational, i.e., even the highest level constructs are executable (though
very inefficiently). Hence, all transformations are potential optimizations. Throughout this report, we
will tend to call the person performing the optimization and impiementation the "impilemseator”; his
task is "implementation of specifications” or, equivalently, "optimization of programs.”

Although proponents cf this paradigm have been active for severai years [Balzer 76, Bauer
76, Burstall and Darlington 77, Loveman 77, Standish 76], nu production-level system for
transformational optimization has been designec [Partsch 81]. Several probiem areas for the
paradigm have become evident:

- Constructing a library of trancformations that adequately captures most useful
optimizations (for any specification/programming language). Standish [Standish 76),
Barstow [Barstow 79], and Rich [Rich 81] have done pioneering work in this area.

- Indexing such a library so that one can browse through it to find transtormations suitabie
to the purpose at hand. This is an essential component recently considered by
[Neighbors B0} as a classification issue. A different approach to the problem is to
develop generic transformations, encapsulating some large chunk of knowiedge about
several different bui reiated transformations.

- Veritying and validating transformations to be correctness preserving. Work by Gerhart
{Gerhart 75] and Broy and Pepper[Broy 81]) has provided a technology for
transformation verification, though its adequacy has yet to be tested on any significant
set of transtormations.

- Designing a mechanism for dynamically verifying that conditions in the program pertain,
enabling the application of transformations. In its worst guise, this is the automatic
theorem-proving probfem; it may suffice to use flow-analysis techniques developed for
traditional compilers (see [Geschke 72] and[Babich 78]) along with specialized
predicate pushing mechanisms developed in program verification efforts (see [Deutsch
73} and [Dijkstra 76)) and transformation system designs (see [Cheatham 79]).

- Automating large parts of the transtormation process. Enormous chains of primitive
transformation applications are necessary to optimize even the most trivial specifications.
Simplitication |Kibler 78] and conditioning [Fickas 80] (getting the program into shape

, for a desir+d trar.sformation) are two approaches to this problem. These are tied together

| by the work ot Feather [Feather 79], in which the implementor describes how he would

like the resulting program to look, aiong with some key (insighttul) transformations the

~c s . e - - . - e e _ - P F S U R TR W

system should use in obtaining it. Naturally, all work on optimizing compilers is relevant
here [Schwartz 75, Wulf 75, Allen 75).

- Describing what the implementor did in optimizing the program--i.e., describing the
design decisions as well as the particular steps he went through in producing the final
program. Such information must be available for modifiers of an optimization design to
be able to maintain the original specification. Feather [Feather 79], Feather and
Darlington [Darlington 79], and Sintzoff [Sintzoff 80] have laid the groundwork for this
largely unexplored problem.

- Scaling up--problems of size. For realistic applications, enormous numbers of
transformations, transformation applications, intermediate program states, intermediate
predicate states, etc.. must be dealt with quickly. This makes size the most crucial
problem to be solved.

However, not all of the problems need to be solved to obtain a useful, albeit incomplete, system.
People currently maintain predicates correctly (or approximately correctly) with considerable
success. Thus, it does not appear that proofs of programs or transformations are crucial; we can
(temporarily) continue to rely on peaple to perform these tasks informally. Also, it is quite reasonable
to expect that the automation problems--simplification and conditioning--will become more tractable
and that an acceptable level of automation can be achieved through techniques such as
preprécessing sets of transformations, using, for example, the ideas of Kibler [Kibler 78] and Knuth
and Bendix [Knuth 70]; automatic data structure optimization, as begun by Low [Low 74]; and
automatior of conditioning transformations, as begun. by Feather [Feather 73] and developed by
Fickas [Fickas 80). While these capabilities are being developed, a useful transformation system must
rely on more intervention by the user. Hence, arriving at a useful, large catalog of transformations,
supperting its perusal, and documenting the development process itself seem to be the unsolved
problems most critical to realizing a practical transformation system.

This report focuses on the fast of these problems--documenting the development of the
optimization for the purposes of maintaining the specification and subsequently reimplementing it.
What we call a program development is a formal document explaining the implementation of a
specification for subsequent use by maintainers. The efforts of Feather and Darlington [Feather
79, Darlington 79. Darlington 82] expose the fundamental principle: if the application of
transformations is expressed in a way that captures the structure or optimization strategy being
pursued. it may be read later to understand how subsequent specification changes might impinge on
the original optimization, and whether or not the original implementation strategy is still valid. N.B.:
Feather and Darlington made the crucial observation that a formal structure representing the
optimization has the potential to be replayed automatically--reapplied to a changed specification.
Sintzoff [Sintzoff 80] defines precisely the notion of design decision and develops several commonly
used structuring facilities. Cheatham {Cheatham 81] provides a mechanism for replaying the
historical development of the program on subsequent versions. Swartout [Swartout 81] has
designed a system to generate explanations automatically, given appropriate formal documentation
of the nrimitives frcm which a program is constructed and the goals which they accomplish. The
reiationship of these bodies of work to ours will be detailed in the relevant sections which follow.

Our work concerns the nature of the formal object we call the development structure, which is
applied to specifications to produce implementations. This characterization of development
structures as objects applied to programs to produce other programs allows our development
structures to encompass the related notions of developments, strategies, transformations, and
editors. Transformations obviously satisfy this characterization. Editors are simply programs (usually

'
o - : o ANy s . ion e as < e e s e paa
{ b = e e . L el AR T NRRTRRM A Y

interactive) for applying sequences of transformations (not necessarily equivalence- or correctness-
preserving). Strategies represent the intent, or plan, behind such sequences, and developments are
the combination of all of these capabilities into a coherent structure.

Below we list the properties :equired of a development description language and relate this
language to the development procass itself and its use in replay. We then describe POPART [Wile
82], a prototype system we have built for experimenting with developments, transformations, and
other program manipulations.

2. DEVELOPMENT LANGUAGE PROPERTIES

Recall that the principal reason for the development language is to enable future (re)implementors
to understand how the original implementation was made. This does not actually necessitate a
formal development language in and of itself. (As we mentioned above, the desire arises from the
observation that developments expressed in a formal language could be reapplied to changed
specifications (automatically) and, in some cases, would produce an appropriate reimplementation.)
Hence, it is not the formal properties of the language that determine the desiderata for the
deveigpment, but rather those properties of the language that will allow suitable explanation for
reimplementation purposes.

in particular, the primary property of the development language is that it should allow the optimizer
(human) to explain well (to the human reimplementer) the mativations and design decisions made in
the original development of a program. At the very least, this implies a structuring of goals and
explanations into goals with subordinate goals or ways of achieving them. Hence, some mechanism
for subordination will be required: traditional mechanisms achieving these include named
subfunctions and explicit refinements ("do X by doing Y and Z2").

In addition, goals at the same conceptual level must be related to one another; hence, the need for
mechanisms conveying goal dependencies as perceived by the implementor. For example, it will
certainly be essential to understand that two subgoals are independent. The maintainer should be
able to ignore independent subgoals that deal with sections of the specification unaffected by a
change.

The particular goal structures we have foreseen include the following:

- Sequential dependency (composition): Goal A must be achieved before goal 8.
- Goal independence: Goal A may be achieved in paralle! with goal 8.

- Choice: Goal A was chosen from a set of possible goais {4, B, ...} all of which supportea
the same overall goal.

- Conditional goais: Goal A need only be achieved if 8 could not be achieved.
- Repetitive goals: achieve a set of goals {A,, A, A3...}.

Other primitive goal structures may become important as we gain more experience with
developments and development languages.

iemaiit,

p—

More complex goal structures should also be expressible and, most importantly, definable, for
these correspond to plans or strategies in design activities. Certainly they need to be
parameterizable as well. V> see a spectrum of plan-like objects, spread along the axis of
“completeness” or "degree of parameterization.” In particular, a low-level, single-purpose
transformation is a complete plan that is quite certain to succeed with little intervention from the
implementor. Transformations with "free parameters” are a little less transformation-like and a little
more strategic--for example, a transformation that introduces an arbitrary predicate to break out a
special case. At the "less complete” end of the spectrum, a plan for "divide and conquer" that reads
“split off parts, apply function to parts and then combine resuits” is a highly parameterized,
incomplete plan. It is clear that the implementor must be able to define and invoke the whole
spectrum of plan types.

interestingly enough, Sintzoff has independently arrived at essentially the same goal structuring
facilities for recording design decisions. He includes an inductive decision type; we substitute several
forms of conditionality (including loops and recursive plan invocation) to achieve the same ends. It
would be surprising if any great differences were exhibited in such a minimal-semantics, decision-
structuring language! The main source of difference lies in the primitives filling the structure and the
interpretation of the structure.

Until now the discussion has not required any properties of the development language dependent
on the choice of specification/programming language. Appropriately so, for the whole notion of
implementation strategy and documentation is primarily language independent, relying only on
"programming knowledge" (currently) locked inside experts’ heads. The only reai constraint on the
development language that relates to the programming language is that all commands necessary to
describe program manipulation be expressible in the language. This requires that the development
language be grounded in some language for manipulating programs and program properties. If an
extremely powerful underlying mechanism were present, this could be as simple as the single
command "achieve goal.” For our experiments we have chosen a quite basic editing language, but
other quite different (primitive) languages could have been chosen and used successtully within our
development ianguage.

To summarize, the overall goal is to explain the implementation, using a formal development
language which is capable of expressing: a rich goal structure, all program manipulations necessary
to optimization, and plans for optimization as well as detailed optimizations.

3. OUR DEVELOPMENT LANGUAGE

The development language we have designed and implemented (calied Paddle‘) primarily
emphasizes structure. The structural aspects of the language seem almost independent of the
programming/specification language whose objects are being transformed. That independence is
emphasized below, where the structural facilities are introduced first, followed by the actual primitives
that manipulate the specifications.

1From PopArt's Development Language: a homonym.

Ml i i

3.1. Definition and Refinement

The need for definition facilities for transformations, strategies, pians, etc., was mentioned above.
Although there may be strict distinctions between these various definable entities, we are not yet sure
where to draw the boundaries. Hence, our development language currently supports only a single
definition facility: the command, consisting of a name, a set of parameters and a body. Let's define
the well-known problem-solving paradigm “divide and conquer.” We would like to capture the
essence of this paradigm in an abstract plan. We begin by defining the following Paddle command:

command DivideAndConquer(function,set) =

begin
split set into subsets, s,, s,, ...;
compute a related function, f,, on the subsets;
combhine valves of f, on subsets via a new function, f,;
aote You must insure that function applied to set =

f, applied to {(fy(sy), fils,)), ...}
end

The begin/end pair indicates the sequential composition of goals t tisfied by the
implementor, i.e., the goals must be satisfied in the order stated. "Split,” "com, and "combine"
are not understood by the development system as predefined commands. Rather, the user must
refine these "stubs” to deal with the situation at hand when the command is actually invoked. In
particular, we could refine the "split” stub into a binary decomposition of the set using the following
syntax for refinement (a refinement is simply an in-place definition):

split set into subsets Sy S,
by
binary partitioning into s ={e,...e, ,} and
PR CIWPYSRREL M &

The use of the reserved word by indicates that what follows the description is what was actually
meant by the commentary before it. This will be indented and, thus, appropriately subordinate to the
concept it implements. Thus, as with Caine and Gordon's Program Design Language [Caine 75], our
development language provides a skeletal structure for English description leading ultimately to
primitive Paddle commands.

3.2. Goal Structures

The examples above already illustrate two different goal structures: sequential composition and
refinement subordination. Another goal type that arises frequently is an and goal: the optimizer
wishes to convey independence of subgoals. Paddle allows this using the each construct. There are
at least two varieties of and goal: each must be achieved independently or each must be
achievable independently (but the order chosen may be relevant). The latter interpretation has been
adopted in Paddle; the former may have to be introduced later.

L e s ey AR AR

T T R as ae L T PR : LI

Another Paddle goal type is a choice goal. For example, the transformation/plan designer may
wish to convey more information about the aiternative possible methods for doing the split above.
This is accomplished using the choose from construct:

split set={e,,e,,...} into subsets s, s,, ...;
by
choose from

partitioning into s ={e } and s,={e,.e,....};:
binary partitioning into s1={e1...ek/2f and
P CVETSCRRL S

basis partition s

f 52‘ 54. 521,
where each e

S
‘N . : X
1s a linear combination of the S,J

end

Presently. such choices are not made automaticalily; the implementor decides in each situation
what the appropriate selection should be.

Conditional structures, are used to make automatic choices. Currently the only conditional
structure, first of, is like LISP's COND, in which the first goal to succeed is the one chosen.? For
example, the following indicates successively worse implementations (slower or requiring more
space) for sequences:

tirst of
Arraylmplementation;
LinkedListImplementation;
Doublyl inkedListImplementation;
HashedImplementation

end

if each of the "Implementations” is a transformation. then the first one to be usable in the current
situation will be the goal achieved. The faiiure of each goai is the conditionality for the attempt of the
next alternative.

Finally there is a loop goal structure that enables the body to be executed (achieved) repeatedly
while (or until) another goal is satisfied. An example of such a loop structure is one that impiements
all sets by repetitively applying the above conditional set implementation transformation tc each
unimplemented set.

These goal structures provide Paddie with a general programming capability so that arbitrary
developments can be constructed. Our goal is to make such developments both convenient and
understandable.

2A syntactic variant. in the form of an it then-else statement, is aiso planned.

3.3. Relationship with the Program Manipulation System

Paddle is a fanguage for structuring goals. How these goals are achieved is an orthogonal issue
dependent entirely on how the terminal nodes of the goal structures are defined. As we mentioned
earlier, a single primitive command, achieve, could be used as the terminal node for all goal
statements, which would feave to the transformation system the choices of how to achieve the
primitive goals. We could be slightly less ambitious and allow "hints" to the transformation system by
introducing Feather’s using statement:3 the goal is to be accomplished automatically, but it must use
a set of named transformations in its achievement [Feather 79].

Alternatively, a iarge set of primitive commands could be used to describe very particular ways of
achieving goals; some may appear to be actions rather than goals. Although all of these options are
acceptable, we have chosen the last, in the form of an editing language, as the primitive Paddle node
language expressing how to accomplish the goals stated in the development. This choice was
thought to be both universal and easily implementable; further, as higher levels of automation are
achieved (as is planned), more abstract "primitives” can be added. In the meantime, we will continue
to have a functioning, usable system.

3.4. Operational Iaterpretation

In fact, the set of primitive commands is actually a parameter to Paddie; however, the fact that the
goal structure is given an operational interpretation is fixed and cruciat to the actual kinds of
problem solving/design activity that can be expressed. In particular, the overall model of program
manipulation used by Paddle is as follows: there is at all times a specification/program affected by
Paddle expressions. This specification/program, together with the active goal structure(s), forms the
data and control portion of the state of the "abstract Paddle machine.” The development structure
is applied to an initial state to produce a new state. That application is a relatively straightforward
interpretation of the development language as though it itself were a programming language. In
particular, it is a depth first, left-to-right tree traversal of the goal structure represented by the
development.

The state into which the initial state is transformed depends on whether the development process
contains any errors or is incomplete. In such situations, the new state represents "progress so far”;
facilities are provided for fixing the Paddle "program" and continuing. When there are no errors, the
development is entirely automatic, and the Paddle program indeed represents the entire
implementation history of the specification: the final state is the implementation. N.B.: It is the
avtomatic application of a development structure to a specification to yield the final implementation
which guarantees the fidelity of the implementation explanation.

We emphasize that Paddie is executed as a programming language; we have no facilities to
interpret Paddle breadth-first or in some other nonoperational manner. To illustrate the significance
of this decision, consider the problem of choosing two different data structures in different parts of
the program. An implementor may interactively decide which choices to make "in any order.” using
whatever strategy he feels is appropriate (breadth-first examination of alternatives. for example). The
system, when it is applying the development to the program (for example, during a replay). will

3Also used in Hewitt's (full) Planner.

R TS AR AV e ce U sl o e ot dted

completely elaborate one of the choices and its dependencies even before introducing the other
choice.

This distinction involves the differences between the development process and the development
structure, to be described presently.

4. THE DEVELOPMENT PROCESS

Although the development structure is applied like a program to a specification to yield an
implementation, the process of designing the implementation and its explanation is by no means so
stylized. In general, the following scenario captures the normal activity of the implementor:

Repeatedly:

- Focus on a program fragment;

- Find an appropriate implementation strategy:;

- Get the program into “condition” to allow application of the strategy;
- Apply the strategy;

- Simplify the resulting program.

Notice that the process is potentially recursive in two ways: conditioning the program may require
that further subgoals in the process be met, and applying the strategy itself may require modification
of several pieces of the program (as in the divide-and-conquer example above). This recursive
structure must eventually be reflected in the development. It can be incorporated wholly beforehand
(a priori) or afterward (a posteriori) as the explanation of that development.

An impiementor normally switches back and forth between these two modes during any single
session.

4.1. A Priori Explanation

A priori explanation corresponds to planning, or using an existing implementation strategy. This is
certainly a frequent initial implementation approach, for high-level specifications are usually so
intrinsically inefficient that previous experience with similar problems suggests an overall
implementation design. For example, while text-processing systems are best specified as multiple
pass algorithms, most programmers will implement such systems as single pass algorithms. Hence,
most implementors will choose multiple pass merging as their topmost strategy.

To produce an a priori explanation using our system, the implementor must indicate the focus of
attention on the program in the development, as well as the actual implementation plan. He generally
creates a piece of development structure to express both the implementation plan and the focus of
attention. He then applies the development structure to the specification.

N

bl N e i L

A A

When using a priori explanation, and therefore, applying a development to a specification, the
implementor needs feedback as to exactly what is happening to the specification, in case his
expectations are not met. Hence, in our system, the application of the development structure is
traced. This gives the implementor exactly the same feedback as he would have had if he had done
the transformations a posteriori.

Normally, something goes wrong during a priori development. Either the development plan
contains undefined steps or a transformation’s pattern or enabling conditions fail to match. When
this happens the implementor becomes praoblem-driven rather than strategy-driven: he will produce
an a posteriori explanation.

4.2. A Posteriori Explanation

When the implementor is not sure what transformation to apply next, or what portion of the
program to focus on, or when problems arise with a pianned development, he will switch his attention
to the program iiself. He may change the program, using editing commands and transformations.
Often, such commands are used to condition the program for the transformation that was being
attempted. When this happens, he may want the editing steps to be "bundled up" and inserted into
the development structure, or he may want to make a new transformation which generalizes his
editing steps and insert a call to it in the development., Support for both of these processes is
provided in our system.

We emphasize that ultimately, it is the entirely automatic application of a development to a program
to produce the resulting implementation that gives credence--and self-confidence--to the optimizer.
Despite excursions into a posteriori explanation, the final implementation must appear to subsequent
maintainers to have been produced entirely a priori.

S. REPLAY OF DEVELOPMENTS

Of course, the reason for having the development structure as a formal object in the first place is so
that replaying the develiopment (in part) on changed specifications is the normal mode of operation.
Unfortunately, simply having the explanation for the implementation does not guarantee the ability to
replay developments accurately. There are two basic problems:

- Replaying the development and getting errors when it was expected to work.
- Replaying the development and getting no error when the replay should not work.

Naturally, the latter problem is the most insidious, for the implementor will not know that the new
development is flawed. These can arise from insufficient identification of assumptions in the original
development or implicit assumptions in the system.

5.1. Unexpected Errors
We have no real-world experience with replay, since we have not "maintained” (i.e., changed) any

of the example specifications yet. Nevertheless, a fair amount of it occurs even in a normal design:
midstream in the design, one often decides to try the whole thing "from scratch,” as though the entire

e

B e P]

10

development were designed a priori, in order to test the accuracy of our development structure. From
this experience, it is clear that the problems related to the development failing when we thought it
would work are often problems of focus. The language we use is inadequate for expressing exactly
which portion of the specification or development is being transformed. Generally, the language is
simply too low level--it does not identify the pieces being transformed by using labelled program
segments or high-level descriptions, like, for example, "the loop over characters.” High-level editing
notions as suggested by [Waters 82] must be incorporated to avoid this probiem.

5.2. Unreported Errors

We have begun to use conventions to forestall problems of the second type above. First, we often
express a "map” or “template” of what we believe the implementation looks like at different, key
stages in the development.

Second, we have started identifying key stages in the development structure where a dynamic
snapshot of the implementation should be presented to the implementor. In particular, although the
tracing facility is extremely useful during the design of the development, it is just like any other tracing
facility when the traced object becomes large: it is overwhelming. Hence, looking back to it for
information during reimplementation would be time consuming.

We have found it quite useful to identify major steps. in the development and print out the entire
implementation state before and after those steps. Subsequent maintenance versions can be
compared with the original major steps to decide on new strategies. Basically, this is one mechanism
which aliows the maintainer to check that his newly created development is “on track” with the old
one when he intends for it to be.

Of course, the major issue of checking that (implicit) assumptions match is most difficult. Recent
work on semantic matching by [Chiu 81] has solved part of the problem; systems can automatically
compare two implementations anu present semantic explanations of their differences to the user.
However, this area remains completely open for solutions.

6. THE UNDERLYING PROGRAM MANIPULATION SYSTEM: POPART

POPART* [Wile 82] is a system developed in Interlisp [Teitelman 78] to provide the basis for a
programming environment for arbitrary programming languages--in fact, for arbitrary {anguages
describable in BNF. The tools provided for objects described by BNF grammars5 include a parser, an
editor, a pretty printer, a lexical analyzer, and a language-independent pattern-matching and
replacement mechanism. In fact, the transformation system itself is one of these language-
independent tools! A “pure” parser was produced initially as a reaction to systems that embed
semantic processing in the syntactic parsing mechanism [Griss 76]--LISP itself seemed to be a
preferable medium for expressing the semantics of parsed sentences. In fact, to support the set ot
tools mentioned, an abstract representation of all the information in the source language must be

‘Pfoducer ot Parsers and Related Tools.

50! course. a variant allowing regular expressions

LR]

maintained--i.e., a "pure" parser must be used for such systems. The idea to provide tools for
manipulating expressions in these languages arose from proposals by Balzer [Balzer 69, Balzer 73]
and Yonke's Ph.D. dissertation establishing its feasibility [Yonke 75]. POPART is certainly related to
recent efforts on programming language environments, such as Gandalf [Habermann 80, Feiler 80]
and the environments for PL/CS [Teitelbaum 81) and Pascal [Kahn 75). 1t also defines a language for
program manipulation, and is thus related to the recent work of Cameron and Ito on grammar-based
metaprogramming systems [Cameron 82].

A BNF grammar is used to generate an abstract syntax for the language; expressions are
subsequently parsed by POPART into this abstract syntax. Theieafter, no other representation of the
program exists--i.e., no stream of lexemes or characters. All tools work with the abstract syntax,
variously converting strings into it and it into strings when communication with the user is necessary:
the user always views and enters source language--he never sees the abstract syntax
representation itself. This is quite different from the Gandalf system. but is consonant with Kahn's
Pascal system, Mentor. POPART is embedded in the Interlisp interactive environment: it is a set of
"commands" invoked just like any other Interlisp commands (EVALQUOTE). Hence, we should think
of POPART not as a system, but as a set of augmentations to the aiready extensive Interlisp
environment, provided to deal uniformly with objects described in BNF grammars.

POPRART itself is intended to be a set of tools from which a system designer constructs and
customizes a system. The default mechanisms provided to the designer support an environment in
which a single object is always being edited (for each grammar known to POPART). The user of the
editor has commands for moving about in the abstract representation of the object; he may go in, out,
forward, and backward in the structure. He also can change the object, but only in ways that maintain
the grammatical integrity of the object. Appendix | contains a transcript demonstrating the use of the
POPART editor.

it is not the intent of this report to describe the POPART system in detail. Those portions relevant
to understanding the transformation system (component) will be dealt with as they are encountered.

7. STRUCTURES EXPRESSED IN THE PADDLE LANGUAGE

The single most powertul feature of the POPART/Paddle system is that since Paddle itself is
described as a language with a formal syntax, Paddle developments themseives may be manipulated
by the user using the POPART primitives! This is the nature of the synergism derived from using
generic, tool-based systems rather than pat encapsulations isolating users from the environment
system.

The fact that the Paddlie language is independent of the programming language means that the
development structure mechanism can be a POPART tool. As was mentioned above., POPART
editing commands can be written using Paddie’'s program manipulation facilities. Introducing
Paddle comes full circle: we use POPART on Paddle. and then use Paddie in POPART.®

The Paddle development language is used to describe four different structures to POPART: Globat
Commands, Simplifications, Conditioners, and the Development.

6Note we have not yet used POPART and Paddle to implement POPART and Paddie

1.1. Global Commands

The global commands are simply parameterized macros that can be used in any of these POPART
structures and that may be explicitly invoked as editing instructions when editing the program itself.
For example, if one wanted an abbreviated way to find a conditional statement, he might define the
command:

command FindIf() =
Find !ConditionalStatement

This innocuous definition represents much of the complexity of the Paddle/POPART marriage, so
we will belabor it a bit. First, there are conceptually three different languages invoived here:
- the language of the development system, Paddle;

- the primitive commands of the development system (chosen to be POPART's editing
commands);

- the programming language that represents the program being transformed.
Font Conventions

Different font conventions have been adopted for each of the different languages to help the reader
differentiate them, as follows:

Paddie :
Development Language -- optimize body, comments, and so forth
Development Keywords -- each, by, first ...

Global Command Names -- Mergeloops, FindCall...

Popart

Primitive Command Names -- Find, ITgop, ReplaceAll. ..

Programming Language
Programming Language -- text, character, vary3...
Programming Language Keywords -- begin, end, procedure...

Notice that the Paddle globa! command Findlf above is defined to be the POPART editor Find
command of a pattern in the programming language: !ConditionalStatement. It is necessary for
POPART to support switching between grammars for such expressions to be parsed. The expression
IConditionalStatement indicates that anything syntactically derivable from the grammar nonterminal
"ConditionalStatement” should match. ConditionalStatement represents a pattern variable in the
pattern language used for the Find and Replace commands.

What are normally considered to be transformations are also definable as commands. For
example, to replace a conditional whose predicate is the constant true with its then clause one could
write the following:

command ReplaceWithThen() =
begin
first of
Match if true
then !Statement;
Match if true
then |Statement
else |Statement #
end;
Replace !Statement
end

The POPART editing commands Match and Replace are the primitives of the Paddle development
language. Notice that here in a simple transformation we have used the conditional goal satisfaction
mechanism of the Paddle language--the first of command.” Either pattern may match (an if
statement with or without an else clause). The Match command differs from the Find command in
that itis an "anchored search” for the pattern. The statement matched wili subsequently be replaced
by the. then part. This replacement will only occur if (some option within) the first of command
succeeded. Otherwise, the first of command will fail.

Finally, plans or strategies as described above may be included among the global commands:

command DivideAndConquer(function,set) =
begin
split set={e,.e,,...} into subsets s,, s,,
by
choose from
partitioning into s ={e,} and s,={e,.e,,...};
binary partitioning into s,;={e,...e .} and
PR LIV ISEREL M &
S;v Sy Suu ... S,

basis partition s,
s a linear combination of the S,3

where each e, 2
end
compute a related function, f,, on the subsets;
combine values of f1 on subsets via a new function, fz;
note You must insure that function applied to set =
f, applied to {f (s,). f,(s,). ...}
end

Notice, in this command, the only predefined command is the note command!

7Lack of an “option” in the pattern language forces the use of the first of command. We contemplate the future use of
POPART's BNF to specify patterns, thus eliminating this ditficulty.

TR BB 0 2% 0 - b WL WA oA T4 T A b T e T e KA o €) e e T R O A

L y 1~ e ‘i -

14

7.2. Simplifications

Paddle is also used to describe simplifications to the editor. Each time a Seplace command is
called in the editor, the resulting expression is checked for various simplifications. Some of these are
described by the grammar designer to POPART, such as automatic removal of extra parentheses
when nested constructs replace expressions in which the nesting is unnecessary. In addition, a single
Paddle Simplification command is always applied to the moditied program when a replacement is

made. For example, the ReplaceWithThen command defined above would be a reasonable
simplitication command to try. If we had an analogous command, ReplaceWithElse,

command ReplaceWithElse() =
begin
Match it false
then !Statement
else !Statement# ;
Beplace !Statement #
end

we might include these in the simplification structure:

tirst of
ReplaceWithThen;
ReplaceWithElse

L 4 . *

end. .

7.3. Conditioning

During the transformation process, it is frequently the case that a transformation's pattern will fail to
match when the implementor thought it would {or should). He will then have to divert his attention
from transforming to "getting the program into condition” to be transformed. Normaliy, this process
of conditioning” the program will merely involve the application of a simple, equivalence-preserving
transformation to the program.

POPART provides conditioning at the syntactic level within the Fing and Match commands. The
system builder builds tables which direct this activity by classifying productions as having associative,
commutative, or nested fields. POPART will then automatically rewrite expressions using this
information to condition it to maich.

Conditioning is also provided for in the Paddie language in a manner analogous to simplification: A
conditioning command is applied to the current expression to attempt to change it so that it will match

BWe previously called this "jittering. " but find the connotation distastetul.

15

a pattern that has failed to match.? For efficiency reasons, this will require preprocessing of the
conditioning commands, to see if the pattern being matched could be produced by a Replace
command in the conditioning command. For example, if the following conditioning commands were
given to the system,

begin
command IntroduceThen() =
begin
Match !Statement;
Replace if true
then !Statement
end;
command IntroduceElse() =
begin
Match !Statement;
Replace if false
then null
else !Statement
end
end
and the user attempted

Match if {Predicate then !Actioninvocation

when the current expression was

TextRemove(text ,character]

the conditioner would have to notice that the IntroduceThen command produces a conditional
statement with the same format as the pattern being matched (the argument to the Match). it would
then attempt 10 execute the command. If it succieded, and the resulting expression matches, it is
done.

if true then TextRemove[text, character]

Otherwise, it has a choice: it can either atiempt to make the coimmand succeed or try other
conditioning commands. We will probably implement this mechanism as a breadth-first search with a
very early cutoff (depth 2). This mechanism is significant because Paddle is used to express afl
program manipulations and because much of the conaitionality currently embedded in plans and

qQ
This is not implemented yet.

L cmaeviam wimny

16

developments to handle local variability can be factored out and put into the conditioning mechanism.
This will greatly simplify and clarify the plans and developments while insuring that this conditioning

capability is uniformly applied.

7.4. The Development Process: A Simple Example

Of course, the development structure itself is the major focus of attention here.

Appendix Il is an actual transcript of a development of an implementation for the toy specification
designed in Appendix 1. The two transcripts together--Appendix | and Appendix |i--have been
constructed to be "self-explanatory"”; many details of the POPART/Paddle system can be gleaned

from careful reading of them.

The development process described in the Appendix typifies the nature of interactive program and
development manipulation. Two characteristics stand out:

- The development process is much more verbose and tedious than the final development
explanation.
- The development process is quite error-prone.

Both argue strongly that a transcript of the development process is inappropriate documentation of
the optimization itself.

7.5. Text Compression: An F.xtended Example Development

The actual development structure arrived at in the above example was too trivial to actually
demonstrate most of the interesting issues involved in structuring explanations for later consumption.
Hence. a related but considerably '~nger example development has been presented in its final form in
Appendix lll. This describes the partial implementation of the program:

begin 1
action]
savet[text !list of character, pred |predicate]
definition loop(any character) suchthat character in text
unless pred(character)
do removet[text, character]:

relation
redundant«space(character, seq |list of character)
definition successort{seq, *, character) isa space
and character isa space;
loop(any linefeed) suchthat linefeed in text
do atomic insert linefeed isa space;
delete linefeed isa linefeed
end atomic;
savet[text, 'a character ||character isa alphanumeric or character isa
space];
loop(any space) suchthat space in text and redundant«space(space,
! text)
do removet(text, space]
end. .

This example was first worked out (manually, without system aids) in [Balzer 76]. In that paper,
approximately the same development strategy as we are now able to describe formally was suggested
as the desirable way of accomplishing the optimization. Our formal representation of that strategy is

now: ™

begin
Pretty:
MajorStep substitute savet definition for call
by Unfold savet:
MajorStep obtain a single loop
by !POTAndCommands;
MajorStep optimize loop body
by 'POTSeqCommands;
MaijorStep pick data representations
end. .

The primitive command MajorStep causes the program to be printed out after its refinement has
been executed. As was mentioned above, the verbatim trace of the executed primitive commands is
not very valuable after-the-fact documentation. It is much more informative for the development
structure to dynamically identity key steps which subsequent optimizers should use as "checkpoints™
that the maintenance they perform is “on track” with the previous optimization. Thus. Appendix [V is
included as an important (though easily regenerated) adjunct to the formal development. It

1orms summarization of this development has been produced automatically using the POPART pretty-printer's level control
mechanism. The references to 'POTAndCommands and 'POTSeqCommands have been inserted automatically; they are
, merely “stubs” whose values are printed subsequently in the transcript.

18

represents the actual application of the development in Appendix Il to the initial program. The
tracing of the primitive commands has been turned off, yielding a much clearer picture of the
development process itself.

8. PROBLEMS AND FUTURE RESEARCH

We believe we are in an excellent position to begin to do experimental research on development
styles and the fundamental support necessary to make transformation systems realistic. The
POPART and Paddie facilities are all implemented and function as described. Extensions to the
system will anse from extensive experiments with large, realistic examples. { expect future experience
to duplicate the past: Paddle commands are defined to approximate some facility that seems
desirable. Experimentation with it leads to its inclusion as a primitive command or its rejection.

We are aware that these specific areas still need considerable attention:

8.1. A Separate Goal Structure

Some goals cannot actually be expressed as independent, even though there appear to be two
separate tasks being accomplished. For example, in the divide-and-conquer plan above, f1 and f2 are
neither independent nor sequentially dependent. This defect may require that a separate goal
structure be maintained (a noninterpretable structure). This is actually necessary for any reasonable
interpretation of codependent goais or even entirely independent goals: the operationality of the
development structure is too constraining to express these concepts adequately.

8.2. Styles to Support Maintenance

Exactly what mechanisms--like checkpoint snapshots of the optimization in progress--are
necessary to facilitate maintenance activities on the specifications? How should the optimizer
describe the editor's focus of attention on the program so as to remain general enough so that simple
changes do not cause the attention to "drift,” and yet be specific enough that replays do not work
with just any new specification?

Although we described the development structure as "an explanation” of the development, there
are other explanatory styles of more utility. For example, [Swartout 81} uses a similar structure to
produce answers to individual questions (about programs); the same might be used to justify
development steps on a more localized basis.

8.3. Generic Transformations

The sequential composition, refinement subordination, and choice constructs provide the bagsis for
creating packages that encapsulate a structured knowledge base of interrelated decisions. Their use
results in selection of an implementation for some higher leve! goal (for example, "divide and
conquer”). Packaging development strategies in ways that exhibit intelligent reaction to information
provided by the user is an important issue for future research: how to describe or suggest the
appropriateness of certain choices and to order dynamically the consideration of decisions.

19

8.4. Increased Automation

it is clear that automatic facilities are necessary for a useful system. Two major areas need work:
predicate maintenance--flow analysis as well as domain dependent "predicate pushing,"” and
automatic conditioning--including choosing appropriate transformations based on hints from the
user.

8.5. Developments in Other Domains

We mentioned above that the set of primitive commands underlying Paddie need not be an editing
language. We have two applications to quite difterent domains in which we wish to study the use of
Paddle. First. we have already experimented with the use of Paddie in Affirm. Affirm {Gerhart 80] is a
program veritication/theorem proving system. Its command set has been used as a Paddle primitive
node language. In that context, Paddle provides a mechanism for defining and invoking prootf
strategies. Paddie deveiopments are applied to a state consisting of a set of theorems to be proved
and a set of program specifications to be verified. The developments (may) represent entire program
validations. A language-dependent version of some of these same Paddle development notions is
captured in the proof metalanguage for LCF [Gordon 78]).

Another appfication in which Paddie may be uselul is for specification design. In particular, the
design decisions used in arriving at an initial specification should be documented as thoroughly as
those used to arrive at an implementation. With a pnmitive node language devoted to describing the
goals achieved when features are introduced into specifications we expect Paddle to provide a
suitable framework for such design documentation. This will not be like Caine and Gordon's PDL
[Caine 75). but will instead document the design process; i.e., the final deveiopment structure will not
contain the program pieces in the leaves, but rather will tell how the specification changes between
design stages.

We must emphasize that the directions taken for the future work will be based principally on the
necessities demanded by a large example. If predicate maintenance does not seem to be a
significant bottleneck, we will ignore it to the benelit of other areas. We believe we have laid the
groundwork for extensive experimentation into the appropriate facilities for realistic transformation
systems of the tuture.

RO

e e e O

20

L. POPART EDITOR SAMPLE TRANSCRIPT

Font Conventions

Paddie
Development Language -- optimize body, comments, and so forth
Development Keywords -- each, by, first ...
Global Command Names -- Mergeloops, FindCall...

Popart
Primitive Command Names -- Find, Top, ReplaceAll...

Programming Language
Programming Language -- text, character, vary3...
Programming Language Keywords -- begin, end, procedure. ..

l¢note The numbers on the left are "interaction numbers," each transaction
with Interlisp is recorded. The command being executed right now
is simply a "comment” command. The first thing a user/optimizer
does is focus POPART's attention on a grammar.

2«EditProgram

d~note Then, the user Sets the attention of POPART to an expression or
statement in that grammar. 1I'11 enter a short specification:

4+Set
begin loop (any character) suchthat character in text do
if character isa linefeed
then TextReplace[text,character, a space];
KeywordSearch[text, keys]
end. .

5+note The representation POPART maintains is a parsed version of the
specification 1 entered in a language called Gist. This representa-

6enote tion is simply a iist structure which is of no concern to the
optimizer himself, for he can examine objects as though they were
in the source language by asking for the expression to be printed
"in a pretty fashion."

Te«Pretty
begin
loop(any character) suchthat character in text
do if character isa linefeed
then TextReplace[text, character,
a space].
KeywordSearch{text, keys])
end. .
8enote In fact, POPART even puts out font information when it is instructed
to as it was here. As with any structure editor, one moves about
with reference to the structure, rather than with reference to lines
or characters. we can move into the current expression using the

21

"In" command:
9«In

10<Pretty
loop(any character) suchthat character in text
do if character isa linefeed
then TextReplace[text, character, a space]..
11enote We can move to the next statement by using the "Next" command:

12«Next

13«Pretty

KeywordSezrch[text, keys]..

14enote This little specification is supposed to "compress” text so that a
keyword search can be made for any of a set of keys. 1 forgot to
put in a statement to remove nonalphanumeric characters. I can
do this using the "Before" command, which inserts its argument
before the current statement.

15«Before

loop ,((any character) suchthat character in text) unless
alphanumeric(character) or character isa linefeed
do TextRemove[text,character]..

16-note I can move tn the outermost expression by using the "Top" command:
17«Top

18«Pretty
begin
loop(any .haracter) suchthat character in text
f do if character isa linefeed
then TextReplaceftext, character,
a space]:
loop((any character) suchthat character in text)
unless alphanumeric(character) or character isa linefeed
do TextRemove(text, character];
KeywordSearch{ text, keys]
end. .
19+note The correction] made is reflected in the current expression.
.. Oops. 1 did not mean to ask if character isa linefeed, but rather
: c. if character isa space in that insertion I just made. 1 can get
: back to where I was in several ways. One is to "UNDO" the command
which got me to the Top, 17. Another is to use the pattern matcher
to Find the appropriate test.

20«Find
character isa linefeed..
Not unique.

21+#note Since there is more than one occurrence in the program, the

matcher has warned mg that I may not have found the one I want.
I can print the context of the match using a command:

Wm«-&h: RV B R R T . . o P (ORI C T L T

S e

22

22«PrintContext
if character isa linefeed
then TextReplace[text, character, a space]..
23¢enote That is not the one I want. 1[I can find the next occurrence of the
last pattern matched by using the "Refind"” command:

24«Refind
Last match,

25-note Clearly, this has to be it. We can replace the current expression
using the Replace command:

26<Replace
character isa space..

27«Top

28~note This is the version of the program I wanted. Let's save it in
case we break something:

29«Snapshot mini-eg

30«Pretty
begin
loop(any character) suchthat character in text
do if character isa linefeed
then TextReplace(text, characier,
a space];
loop((any character) suchthat character in text)
unless alphanumeric{character} or character isa space
do TextRemove[text, character]:
KeywordSearch[text, keys]
end. .
31-note To demonstrate some of the power of the pattern matcher, consider
how we would find the loop generator with an "unless” clause in it:

32«Find
'GeneratorSecondary unless !'Predicate..
Unique.

33-note The user must know the grammar nonterminals--GeneratorSecondary
and Predicate--in order to write this pattern. The values of the
pattern variables with the same names can be seen using the Value
command:

34«Value GeneratorSecondary
((any character) suchthat character in text)..
35+Value Predicate
alphanumeric(character) or character isa space..
36+Pretty
((any character) suchthat character in text)

unless alphanumeric(character) or character isa space..
37-note We can even make the system rewrite the current expression to match
. a pattern--a concept we call “"conditioning.” For

exampie, if we want to match two loops in & row, we can write:

23
38«Top
39«Find
begin !LoopingStatement; !LoopingStatement# end..
Unique.

40«note To demonstrate that the specification has been rewritten, we can
look at the current expression as well as the outermost expression:

41«Pretty
begin
foop(any character) suchthat character in text
do if character isa linefeed
then TextReplace{text, character,
a space];
loop((any character) suchthat character in text)
unless alphanumeric (character) or character isa space
do TextRemove[text, character]
end. .
42«Top

43-Pretty
begin
begin
loop(any character) suchthat character in text
do if character isa linefeed
then TextReplace[text, character,
a space];
loop((any character) suchthat character in text)
unless alphanumeric(character) or character isa space
do TextRemove[text, character]
end;
KeywordSearch[text, keys]
end. .
443+note As before, the metavariables have been set:

45+«Value LoopingStatement
loop(any character) suchthat character in text
do if character isa linefeed
then TextReplace[text, character, & space]..
46<Value LoopingStatement#
loop((any character) suchthat character in text)
unless alphanumeric(character) or character isa space
do TextRemove[text, character]..
47«note The program is in a rather "uncanonical" form. Normally, if the
user enters extraneous begin end pairs, the system will
automatically simplify them away.

48«1In

§ 49«1In

50-Pretty
loop(any character) suchthat character in text

: m " ARG - Lo 5 e R N R SRR s PR Frppere ;;;w;,.g.u»w»s‘ummM

24

do it character isa linefeed

then TextReplace{text, character, @ space]..
51<Replace

begin SillyCali[text] end..
52«Top

53«Pratty
begin
begin
SillyCall{ text]:
loop((any character) suchthat character in text)
unless alphanumeric(character) or character isa space
do TextRemove[text, character]

end;
KeywordSearch[text, keys]
end. .
S54enote Notice that the SillyCall was extracted from the extraneous begin

end pair,

II. SAMPLE DEVELOPMENT TRANSCRIPT

lenote This transcript will demonstrate how the development and its

ce related structures are constructed and applied to the specification.
We must first start off with the specification entered previously
in Appendix I.

2«tditProgram

3-Unsnapshot mini-eg
FILE CREATED 1-Apr-81 16:33:57
((VARS POECurrentObject POEGlobalBindings) (P (POEPrintBindingCommand)))

AePretty
begin
loop(any character) suchthat character in text
do if character isa linefeed
then TextReplace[text, character,
a space]:
loop((any character) suchthat character in text)
unless alphanumeric(character) Or character isa space
do TextRemove[text, character};
KeywordSearch(text, keys]
end..
5«note Normally, when we wish to develop an optimization plan, we simply
edit the development object:

6+-EditDevelopment

7+note Imagine that we would like to merge the first two loops in the
specification. We can write a development which does this in
many different ways. We could write the steps which transform

Lx

" —— e LT - .~«_-_“E!!!!!!!!!!!!!!!!!II!lIlllllllIII-r1-----.......,'.."_.__‘-.“
25 -
the program in-line, or we could invoke a transformation which
is globally defined. Llet's do the latter by using the Set
command--the same as we used for the specification above--to
an expression in the development language, Paddle.
8«Set :
Mergeloops. . :
genote This parses as a command which it knows nothing about. Let's
define the command as a global command and then try to apply it
to the program. We must first switch contexts and edit the
global command structure: L
|
10-EditGlobalCommands 5
ilenote Again, we uSe the Set command to define a Paddle expression for ;
the command which merges loops. The command itself must look
for two toops in sequence with the same generator part, and then
it must replace the two with a single loop with bodies in
sequence. Normally, we need enabling conditions to guarantee
the bodies do not interfere, etc., but for the purposes of
demonstration let's ignore that presently:
12¢Set
begin command Mergeloops =
begin Find begin loop !SetExpression do !Statement;
loop !SetExpression do !Statement#
end;
Replace loop !SetExpression
do begin {Statement; !Statement# end
end
end. .
13«note On type-in, I have tried to indent fairly carefully to indicate the
way the different begin end pairs--from Paddle and Gist--match up.
The pretty version from the system should be more readable:
14«Pretty
begin
command MergelLoops() =
begin
Find begin
loop !SetExpression
do !Statement;
loop !SetExpression
do !Statement #
end;
; Replace loop !SetExpression
3 do begin
; !Statement ; 1
! ' Statement #
end
end
end. .
. 15-note Ok. Now we have a transformation defined, we have a development :
‘ '
-
.
.[\ o Y N W iy e . T O o T e e e

SRS PR i AR o iutih

26

structure and we have a specification which we may apply it to.

Let's try it and see what happens.

16-EditDevelopment

17«note We do this by using the following command:

18«ApplyToProgram
19«Find begin
loop !SetExpression
do !Statement;
loop !SetExpression
do !Statement#
end..
No match.
Fix development tree.

20~note Line 19 was inserted into the transcript as a result of attempting

to apply the development to the program.

In fact, the development

structure has been expanded to include the definition of Mergeloops
and we are left editing the Find command which does not match, viz.

21«Pretty
Eind begin
loop !SetExpression
do !Statement;
loop !SetExpression
do !Statement #

end..
22«Top
23+Pretty
Mergeloops
by begin
Eind begin
loop !SetExpression
do !Statement;
loop !SetExpression
do !Statement #
end;
Replace loop !SetExpression
do begin
! Statement ;,
| Statement #
end
end..

24epote Let's go over to the program and see what is wrong--why doesn't

the pattern match?
25«EditProgram

26«Pretty
begin
loop(any character) suchthat character in text
do if character isa linefeed

eI

SRR 4 0. - - s

27

then TextReplace[text, character,
a space]:
loop((any character) suchthat character in text)
unless alphanumeric(character) or character isa space
do TextRemove[text, character];
KeywordSearch[text, keys)
end. .
27+«note Aha. The second loop has an "unless” clause which is causing the
set expressions to be different on the two loops. In the context
of a loop, we can move the unless clause into a conditional in the

28+note loop body. We can either do that now to the program or go over
to the development and describe how to do it there. Let's do the
latter.

29«EditDevelopment

30<UNDO Top
Top undone.
31¢Pretty
Eind begin
{foop !SetExpression
do !Statement;
loop !SetExpression
do !Statement #
end. .
32«note We are now back on the Find command which would not match. We can
refine this command to include explicit "conditioning" to the
specification which will cause the LoopMerging pattern to match,

33«Replace
$$ by begin Find lonp !GeneratorSecondary unless !Predicate do !Statement;
Repltace loop !GeneratorSecondary do if ~(!Predicate) then
!Statement
end. .

34enote $$ always refers to the current expression in the editor. Hence,

the last statement merely added the unless conditioning step to
the fFind command.

35«Pretty
Eind begin
loop !SetExpression
do !Statement;
loop !SetExpression
do !Statement #
end
by begin
Find loop !GeneratorSecondary
uniess !Fredicate
do !Statement;
Replace loop !GeneratorSecondary
do if~(!Predicate)
then !Statement
end. .

7 AP ENPRNRINERY PR T RE -

v

e

28

36~note Now we can attempt to continue the development from this point
by again asking the system to Apply the current expression to
the specification, from the point at which the editor is focused.

37+ApplyToProgram

38+Find 1oop !GeneratorSecondary
unless !Predicate
do !Statement..

Unique.

39«Replace loop !GeneratorSecondary
do if~(!Predicate)
then !Statement..

40«Find begin
loop !SetExpression
do !Statement;
loop !SetExpression
do !Statement#

end..
No match.
Fix development tree.

Alenote Aha. After finding the second loop and fixing the generator
to match the first, the editor's focus in the specification
is on the loop. Hence, the loop merging pattern did not match.
We must fix this by refocusing after the conditioning.

42«r0te Let's look at the program first.
43«EditProgram

44-Pretty
loop(any character) suchthat character in text
do if~{alphanumeric(character) or character isa space)

then TextRemove[text, character]. .
45+«Top

46+EditDevelopment

47+note Now we can apply the development from the point in error and

.. continue. N.B.: This development no tonger reflects the exact
optimization history, because of the Top command in line 45
that is no longer accounted for. We will return to this.

48«AppliyToProgram
49+«Find begin
loop !SetExpression
do !Statement;
loop !SetExpression
do !Statement#
end..
Unique.

50«Replace loop !SetExpression
do begin
!Statement;
{Statement#
end. .

S1«note Now we are done. We are on the specification side. The "final"
program looks 1ike:

52«Top

53«Pretty
begin
loop(any character) suchthat character in text
do begin
if character isa linefeed
then TextRepiace[text, character,
a space];
if~{alphanumeric(character) or character isa space)
then TextRemove[text, character]
end;
KeywordSearch{text, keys]
end. .
54+note Now we should attend to making the development match the actual
optimization, manipulating the development structure using the

editor.
56«EditDevelopment
56«Top
57¢«Pretty
Mergeloops
by begin
Eind begin
loop !SetExpression
do !Statement;
loop !SetExpression
do !Statement ¥
end
by begin
Find loop !GeneratorSecondary
unless !Predicate
do !Statement;
Replace loop !GeneratorSecondary
do if~(!Predicate)
then !Statement
end:
Replace loop !SetExpression
do begin
| Statement ;
!Statement #
end
end. .
N Ve J T o e

J‘:&....._m b -

B

30

58+note First we will make a transformation out of the conditioning step,
59«note and then wa can put the Top invocation near it.

60«Field
Allowed fields are: POTCommand and POTPrimitiveCommand.

61+«note The POTCommand field is the refinement part of the command.
62«Field POTCommand

63«NAME refinement 62
refinement

64«note This is an Interlisp command which now makes refinement mean the
same as line 62.

65«In
66+refinement

67+Pretty
begin
Fingd Jloop !GeneratorSecondary
unless !Predicate
do !Statement;
Replace loop !GeneratorSecondary
do if~(!Predicate)
then !Statement
end. .
68+note We can now set a transformation language, Paddle, metavariable
to this command in order to move its definition over to the
giobal commands area.

69«SetGlobal
POTCommand = $%..

70«Value POTCommand
begin
Fing loop !GeneratorSecondary
unless !Predicate
do !Statement:
Replace loop |GeneratorSecondary
do if~(!Predicate)
then !Statement
end. .
71enote This conditicning step can be replaced with a call to the
appropriate new command definition followed by a call to Top.

72+«Replace
begin UnlessDefinition; Top end..

73~note And now we can go and define the global command UnlessDefinition.

74+«EditGlobalCommands

m”'— & . -

r o e ——tr, et 1 e 1o

S ——————

31
75+«1In
76+After
command UnlessDefinition = !POTCommand..
77+«Top

78¢note This leaves the commands:

79«Pretty
begin
command Mergeloops() =
begin
find begin
loop !SetExpression
do !Statement;
loop !SetExpression
do !Statement ¥
end;
Replace loop !SetExpression
do begin
! Statement ;
'Statement #
end
end;
command UnlessDefinition() =
begin

Find loop !GeneratorSecondary
unless !Predicate
do !Statement;
Replace loop !GeneratorSecondary
do if~(!Predicate)
then !Statement
end
end..
80«EditDevelopment

81«Top
82-note With the final development:

83+Pretty
Mergelogps
by begin
Find begin
loop !SetExpression
do !Statement;
loop !|SetExpression
do !Statement#

end
by begin
UnlessDefipition:
Top
end:

Replace loop !SetExpression

r——m -

32
do begin
! Statement ;
| Statement #
end
end..
B84~note We can be sure this is accurate by applying it to the original
program.

85«EditProgram

86+Unsnapshot mini-eg
FILE CREATED 1-Apr-81 16:33:57
((VARS POECurrentObject POEGlobalBindings) (P (POEPrintBindingCommand)))

87«EditDevelopment

88«ApplyToProgram

89«Find loop !GeneratorSecondary
unless !Predicate
do !Statement..

Unique.

" 90+Replace loop !GeneratorSecondary
E do if~(!Predicate)
! then !Statement..

91«70p..

? 92«Find begin
Toop !SetExpression
do !Statement;
| loop !SetExpression
[do !Statement#
end. .
Unique.

93«~Replace loop !SetExpression

do begin
!Statement;
!Statement#
end. .
94«Pretty
loop(any character) suchthat character in text
do begin
if character isa linefeed
then TextReplace[text, character,
a space]:
if~(alphanumeric(character) or character isa space)
then TextRemove[text, character]
end..

95¢note Indeed.

33

I1I. THE DEVELOPMENT OF A TEXT COMPRESSOR

The development which follows is intended to be applied to a text compression specification shown
in Appendix IV. The global commands to which it refers are given in Appendix V, and the implicit
simplifications performed on the specification are in Appendix Vi,

Several commands used in this development were not explained in the text; many involve the
distinction between global and local pattern variables. If a Mafch or Find command contains pattern
variables in its pattern, the variables are local. Their definitions (names and values) are flushed on the
next Match or Find. |f it is desired to keep the value of a pattern variable across subsequent
applications of the Match or Find, the variable must be made global. This is done using the SetGlobal
command. The variable must later be removed using the RemoveGiobal command (we intend to
replace this notion with a scope model in the future--the Paddle syntax has it buil{ in (see Appendix
Vil)--but the system cannot yet deal with these variables).

A frequently used primitive command is the Map command. This is like & Match command, but it
makes all the pattern variables into global pattern variables (flushing previous definitions if there were
any). This is useful for describing to subsequent maintainers the exact format the optimizer believes
the program to have at any given moment.

88«vp* 4
begin
Pretty;
MajorStep substitute savet definition for call
by Unfold savet:
MajorStep obtain a single loop
by !'POTAndCommands;
MajorStep optimize loop body
by !POTSeqCommands;
MajorStep pick data representations
end. .

where

't . TAndCommands=
each merge 1st two loops
by !POTSeqCommands#:
merge in remaining loop
by !POTSeqCommands##
end. .

'POTSeqCommands=
begin
command LoopBody() =
begin
Top:
in:
Last:
Field Statement
end;
LoopBody:

SN a3 - ki SRR SSRGS, 0 5 0 o - Tl R s e s A e A 1A S ARTT—

‘

34

note We are positioned at the loop body;
RepiaceAll characteristic(!ObjectExpression)
==>character in text;
Map case character of
linefeed=> !Statement # ;
alphanumeric=>comment NOOP
end comment;
space=> !Statement# ¥ ¥ ;
othercase=> !Statement# #
end case
end..

'POTSeqCommands#=
begin
Top;
Map begin
| DeclarationStatement ;
tLoopingStatement ;
{LoopingStatement ¥
!LoopingStatement # #
end;
begin
note Condition the program to match generator expressions,
first of putting in a supertype generator of linefeed and then
removing the unless clause on the second loop;
Find !LoopingStatement;
SupertypeGenerator character;
Find !'LoopingStatement # ;
UnlessDefinition;
Top
end;
Mergeloops;
MajorStep First2lLoopsMerged
end. .

'POTSeqCommands##=
begin
begin
note Ideally we would probably like to say something like:

Mergeloops using SetToSequence:
Top;
note Now we want to change the generators to sequential

generators, because we know that the test for redundant

spaces requires a sequential scan across the input to insure

loop bodies are noninterfering. ;

Map begin
'DeclarationStatement ;
'LoopingStatement ;

' LoopingStatement #
end;

each !POTSeqCommands;

1POTSeqCommands###
end;

Top

end;

Mergeloops
end. .

{POTSeqCommands=
begin
Eind !LoopingStatement;
To n
end..

'POTSeqCommands###=

begin
Find !LoopingStatement # ;
Field SetOrSequenceExpression;
GeneratorAndwWhen:
Qut:
WhenDefinition;
SupertypeGenerator character;

I nce
end..

IV. THE APPLICATION OF THE DEVELOPMENT TO THE SPECIFICATION:
"REPLAY"

The development structure of Appendix HIi was applied to the (first) specification beiv*: to produce
the trace below. The final program is the program after a single loop body was obtained. The actual
transcript quits when the Map as a case statement was found to be impossible (at which pc. it the
user is left editing the development structure positioned on the failing Map command.)

69«ApplyToProgram
begin
action
savel[text |list of character, pred |predicate]
definition loop(any character) suchthat character in text
unless pred(character)
do removet[text, character];
relation
redundant«space(character, seq |list of character)
definition successort(seq, *. character) isa space
and character isa space;
loop(any linefeed) suchthat linefeed in text
do atomic insert linefeed isa space;
delete linefeed isa linefeed
end atomic;
savet[text, '@a character ||character isa alphanumeric or character isa
space];
loop(any space) suchthat space in text and redundant+space(space,
text)

do removet[text, space]
end..

. B, R (e A T
M T WAPR CUNEERE Otk

———— o crrm e s e e PR RS - s
ot o

36

MANUAL UNFOLDING STEP WENT HERE

Major Step: substitute savet definition for call
begin
relation
redundant+space(character, seq |list of character)
definition successort(seq, *, character) isa space
and character isa space;
loop(any linefeed) suchthat linefeed in text
do atomic insert linefeed isa space;
delete linefeed isa linefeed
end atomic;
loop((any character) suchthat character in text)
unless character isa aiphanumeric or character isa space
do removet[text, character];
loop(any space) suchthat space in text and redundant¢space(space,
text)
do removet|text, space]
end. .

Major Step: First2LoopsMerged
begin
relation
redundant+space(character, seq |list of character)
definition successort(seq, *, character) isa space
and character isa space;
loop(any character) suchthat character in text
do begin
if character isa linefeed
then atomic insert character isa space;
delete character isa character
end atomic;
if characteristic((any character) suchthat character in
text)
then if not(character isa alphanumeric or character
isa space)
then removet{text, character]
end;
loop(any space) suchthat space in text and redundant+«space(space,
text)
do removet{ text, space)
end. .

Major Step: obtain a single loop
begin
relation
redundant«space(character, seq |list of character)
definition successort(seq, *, character) isa space
and character isa space; .
loop(any character) suchthat character in text
do begin

if character isa linefeed

D T TRPo s up et RS Ll ol

it

37W——_—_._._____'w)

then atomic insert character isa space;
delete character isa character

end atomic;
if characteristic((any character) suchthat character in
text)
then if not(character isa alphanumeric or character
isa space)

then removelt[text, character);
if characteristic(text named character)
then if character isa space

then if redundant«space(character,

text)
then removet[text,
character)]
end
end. .

HERE THE MAP ONTO CASE COMMAND FAILED

V. GLOBAL COMMAND DEFINITIONS

These "commands” form a library from which the optimizer chooses his optimization strategies,
plans, and transformations.

command GeneratorAndWhen() =
first of
begin
Match while there exists !QuantifierRole || !LogicalSecondary
and !Logicalfactor;
Replace while there exists !QuantifierRole || !LogicalSecondary
suchthat !Logicalfactor
end;
begin
Match{any !Role) suchthat !LogicalSecondary
and !LogicalFactor;
Replace((any !Role) suchthat !logicalSecondary) suchthat !
LogicaiFactor

end
end;
command WhenBefinition() =
begin

Match loop !GeneratorSecondary suchthat !Predicate
do !Statement; .

Repiace loop !GeneratorSecondary -
do if !Predicate P

then !Statement

end;
command UnlessDefinition() =
begin

Maich loop !GeneratorSecondary
unless !Predicate
do !Statement;

o NIRRT R e 50T Rt e Tl R e ey AR e

Replace loop !GeneratorSecondary
do if not(!Predicate)
then !Statement]
end; {
command SupertypeGenerator(SupType) =
begin
first of
Find loop while there exists !QuantifierRole || (!Variable in !
SetTerm)
do !Statement;
Eing loop(any !Role) suchthat |Variable in)SetTerm :
do !Statement |
end; :
SetGlobal SetTerm; [
SetGlobal Variable;
Replace !Statement;
ReplaceAll !Variable==>SupType;
Replace loop(any SupType) suchthat SupType in !SetTerm
do if SupType isa !Variable

thenss ;
RemoveGlobal SetTerm;
RemoveGiobal Variable

end;
command SetToSeguence() =
begin

Find loop(any !Role) suchthat !Variable in !GeneratorSecondary
do !Statement;
Replace loop !GeneratorSecondary named !Variable
do !Statement
end; :
command Mergeloops() = :
begin ;
Find begin :
loop !SetExpression i
do !Statement;
loop !SetExpression
do !Statement #
end;
Replace loop !SetExpression
do begin
{ Statement ;
if characteristic(!SetExpression)
then !Statement #
end
end
end. .

VI. SIMPLIFICATIONS

These commands are applied {0 each replacement on the program side until the overall command
fails. This accomplishes localized canonicalization of the program at all times.

first of
begin
Eingd it true
then |Statement;
Replace !Statement
end;
begin :
Fing if true i
then !Statement i
else !Statement # ;
Replace !Statement
end;
begin ,
Fing it !Predicate # # # ;
then |Statement# # # !
else !Statement# # # ;
Replace !Statement # # #
end:
begin
Eind if false
then !Statement;
first of
Delete:
Replace comment NOOP
end comment
end
end;
begin
Find if false
then !Statement
else !Statement # ;
L Beplace !Statement #
end;
begin
find false and !LogicalFactor;
Replace false
end:
begin
Eind true and !lLogicalFactor:
Replace !'LogicalFactor
end;
begin
Find !LogicalSecondary and faise;
Replace false
end;
begin
Eind !LogicalSecondary and true:
Replace !LogicalSecondary
end;
begin
Eind talse or !LogicalTerm;
Replace !LogicalTerm
end:
begin
Eind !LogicalFactor or false;

PR

Replace !LlogicalFactor
end;
begin
Eind true or !lLogicalTerm;
Beplace true
end;
begin
Find 'lLogicalFactor or true;
Replace ftrue
end;
begin
Eind not true;
Replace false
end:
begin
Find not false;
Replace true
end
end. .

VII. DEVELOPMENT LANGUAGE GRAMMAR

Popart Grammar Conventions

Definition e.g., A:=- B means define A to be a B
Alternation e.g., A/B matches an A or a B
Terminal Symbol e.g., '+ /- matches the constants + or -
Concatenation e.g., AB matches an A followed by a B
() PatternExpression e.g., {'+ [-) A matches an A preceded by
either a + or a -
+ Repetition e.g., A+ matches any number (>0) of instances of As
+ Lists e.g., At matches one or more As separated by ;s
LEXEME Arbitrary Terminal Symbol, used for identifiers, numbers, etc.,
almost always explicitly filtered.
|> Filter, LISP function following filters is applied after the pattern
matches to further restrict the parse.
|} Compaction: abstract syntax tree for this production is represented
more compactly than normal.
Name, Name# Nonterminal Production: # sign used to distinguish multiple
occurrences of the same nonterminal in the abstract
syntax representation,

POTCommand := POTProgram | POTPrimitive | POTDeclaration || .
POTProgram := POTAndCommands |
POTSelCommands |
POTFirstCommands |
POTWhileCommands |
POTUnt i1Commands |
POTSeqCommands || :
POTAndCommands := 'each POTCommand * ';: ‘end [> POTCheckEllipsis :
POTSe1Commands := ‘choose { POTCriterion } 'from POTCommand * °'; ‘end;
POTFirstCommands := 'first 'of POTCommand * '; ‘end |> POTCheckEllipsis:
POTWhileCommands := 'while POTCommand#

o e T

41

'do POTCommand *+ '; ‘end |> POTCheckEllipsis;
POTUnti1Commands := ‘'until POTCommand#
‘do POTCommand t '; ‘'end |> POTCheckEllipsis;
POTSeqCommands := 'begin POTCommand *+ '; ‘end |> POTCheckEllipsis;
POTInteger := LEXEME |> INTEGER? ;

POTPrimitive := POTPrimitiveCommand { 'by POTCommand } || :

POTPrimitiveCommand := POTUserCommand

| POTParsedCommand

] POTE1lipsis

| POTLispCommand

| POTHistoryEvent || |> POTFillEvent ;

POTUserCommand := LEXEME |> POTUserCommandFilter;

POTLispCommand := POTCommandName { POTArgument + } :

POTParsedCommand := POTParsedName

{ POTParsedArgument t+ POTParsedSeparator } :

POTHistoryEvent := LEXEME |> HISTORYEVENT? ;

POTETlipsis = ' ... ;

NOTE the following production is actually a GLEXEME production which
computes the grammar and delimiters for parsing. See the "params" group
in POPAR:-TRANSFORMATION-SYSTEM;

POTParsedArgument := LEXEME ;
NOTE separator below is obtained from the command formal parameter
description;
POTParsedSeparator := LEXEME |> PQOTSeparatorfFilter;
POTArgument := LEXEME |> LISPEXPRESSION? ;
POTCriterion := POTInteger |} ;

POTDeclaration := POTVariableDeclaration | POTCommandDeclaration || ;
POTVariableDeclaration := 'local POTFormalParameter * ', ;
POTFormaiParameter := POTVariableName { ': POTVariableName#) :
POTCommandDeclaration := POTCommandType POTCommandName

{ '({ POTFormalParameter *+ ', } ') }
"= POTCommand ;
POTCommandType := ‘command | ‘'metacommand ;
POTvariableName := PQOTldentifier || ;
POTParsedName := LEXEME |> POTHasParsedArguments;
POTCommandName := POTIdentifier || :
POT1dentifier := LEXEME |> IDENTIFIER? ;

42
BIBLIOGRAPHY

[Allen 75] Allen, F. E., Bibliography on Program Optimization, IBM Research, Yorktown Heights, New
York, Technical Report RC 5767, 1975.

[Babich 78] Babich, W. A., and M. Jazayeri, "The method of attributes for data flow analysis: Parts |
and I, Acta Informatica 10, (3), 1978, 245-264,265-272.

[Balzer 69] Balzer, R. M., "EXDAMS--extendable debugging and monitoring system,” in Spring Joint
Computer Conference, pp. 567-580, IFIP, 1969,

[Balzer 73] Balzer, R. M., Language-independent Programmer'’s Interface, USC/Information
Sciences Institute, Technical Report RR-73-15, 1972.

[Balzer 76] Balzer, R., N. Goldman, and D. Wile, "On the transformational implementation approach
to programming,” in Proceedings of the 2nd International Conference on Software Engineering,
pp. 337-334, IEEE, 1976.

[Barstow 79] Barstow. D. R., Knowiedge-based Program Construction, Elsevier, North-Holland, 1979.

[Bauer 76] Bauer, F. L., "Programming as an evolutionary process," in Proceedings of the 2nd
International Conference on Software Engineering, pp. 223-234. IEEE, 1976.

[Bauer 81] Bauer, F.L.. M Broy. H. Partsch, P. Pepper, et al., Report on a Wide Spectrum Language
for Program Specification and Development, Technische Universitaet Muenchen, Technical
Report TUM-18104. May 1981.

[Broy 81] Broy, M., and P. Pepper, "Program development as a formal activity.” /EEE Transactions on
Software Engineering 1, January 1981, 14-22.

[Burstall and Darlington 77] Burstall, R. M., and J. Darlinjton, " A transformation system for
developing recursive programs,” Journal of the ACM 24, (1), 1977, 44-67.

[Caine 75] Caine, S. H.. and E. K. Gordon, "PDL--a tool for software development," in National
Computer Conterence Proceedings, 1975, AFIPS, 1975.

{Cameron 82] Cameron, R. D., and M. R. Ito, Grammar-based Definition of Meta-programming
Systems, University of British Columbia, Vancouver, Technical Report, January 1982,

[Cheatham 79] Cheatham, T. E., G. H. Holloway, and J. A. Townley. "Symbolic evaluation and the
analysis of programs.” IEEE Transactions on Software Engineering 5, (4), July 1979, 402-417.

[Cheatham 81] Cheatham, T. E., G. H. Holloway, and J. A. Townley. "Program refinement by

transformation,” in Proceedings of the 5th International Conference on Software Engineering,
pp. 430-437, IEEE, March 1981.

[Chiu 81) Chiu, W., Structure Comparison and Semantic Interpretation of Differences, Ph.D. thesis,
University of Southern California, 1981.

{Darfington 78] Darfington, J., and M. Feather, A Transformational Approach to Modification, imperial
College. London, Technical Report 80/3, 1979.

43

{Darlington 82] Darlington, J., "The structured description of algorithm derivations," in Algorithmic
Languages: Proceedings of the IFIP TC-2 International Symposium, North-Holland, 1982.

[Deutsch 73] Deutsch, L. P., An Interactive Program Verifier, Ph.D. thesis, University of California,
Berkeley, June 1973.

[Dijkstra 76] Dijkstra, E. W., A Discipiine of Programming, Prentice-Hall, Englewood Cliffs, New
Jersey, 1976.

[Feather 79] Feather, M. S., A System for Developing Programs by Transformation, Ph.D. thesis,
University of Edinburgh, Department of Artificial Intelligence, 1979.

{Feiler 80] Feiler, P. H., and R. Medina-More, An Incremental Programming Environment, Carnegie-
Mellon University, Technical Report, April 1980.

[Fickas 80] Fickas, S., “Automatic goal-directed program transformation,” in Proceedings of the First
Annual National Conference on Artificial Intelligence, pp. 68-70, The American Association for
Aritificial Intelligence, 1980.

[Gerhart 75} Gerhart, S. L., "Knowledge about programs: A model and a case study,” in Proceedings
of an international Conference on Reliable Software, pp. 88-95, IEEE, 1975.

[Gerhart 80) Gerhart, S. L., et al., "An overview of Affirm: A specification and verification system,” in
Proceedings IFIP 80, pp. 343-348, Australia, October 1980.

{Geschke 72) Geschke, C. M., Global Program Optimizations, Ph.D. thesis, Carnegie-Mellon
University, 1872.

{Gordon 78] Gordon, M., R. Milner et al., "A metalanguage for interactive proof in LCF," in
Proceedings of a Conference Symposium on the Principles of Programming Languages, 1978,
pp. 119-130, 1978.

[Griss 76] Griss, C., M. Griss, and J. Marti, META/LISP, University of Utah, Utah Computational
Physics Group, Technical Report Operating Note No. 24, 1976.

(Habermann 80] Habermann, A. N., "An overview of the Gandalf project,” in CMU Computer Science
Research Review 1978-79, Carnegie-Mellon University, 1980.

[Kahn 75] Donzeau-Gouge, V., G. Huet, G. Kahn, B. Lang, and J. J. Levy, "A structure-oriented
program editor: A first step towards computer assisted programming,” in /nternational
Computing Symposium, 1975, pp. 113-120, North-Holland, 1975.

[Kibier 78] Kibler, D. F., Power, Efficiency, and Correctness of Transformation Systems, Ph.D. thesis,
University of California, Irvine, 1978,

[Knuth 70] Knuth, D. €., and P. B. Bendix, Simple Word Problems in Universal Algebras, Pergamon
Press, New York, pp. 263-297, 1970.

[Loveman 77] Loveman, D. B., "Program improvement by source to source transformation," Journal
of the ACM 24, (1), January 1977, 121.145,

44

{Low 74] Low, J. R., Automatic Coding: Chaice of Data Structures, U'niversity of Rochester, Computer
Science Department, Technical Report 1, 1974. ‘

[Neighbors 80] Neighbors, J. M., Software Construction Using Components, Ph.D. thesis, University
of Calitornia at lrvine, 1980.

[Partsch 81] Partsch, H., and R. Steinbrueggen, A comprehensive survey on program transformation
systems, Technische Universitaet Muenchen, Technical Report TUM 18108, July 1981.

[Rich 81] Rich, C., "A formal representation for plans in the Programmer's Apprentice," in
Proceedings of the Seventh International Joint Conference on Artificial Intelligence, University of
British Columbia, August 1981.

[Schwartz 75] Schwartz, J. T., On Programming, An Interim Report on the SETL Project, New York
University, Courant Institute of Mathematical Sciences, Technical Report, June 1975.

[Sintzoff 80] Sintzoff, M., "Suggestions for composing and specifying program design decisions,” in
4th Internationai Symposium on Programming, Paris, April 1980.

[Standish 76} Standish, T. A., D. C. Harriman, D. F. Kibler, and J. M. Neighbors, “Improving and
refining programs by program manipulation,” in ACM National Conference Proceedings,
pp. 509-516, ACM, 1976.

[Swartout 81] Swartout, W.R., "Explaining and justifying expert consulting programs," in
Proceedings of the Seventh International Joint Conference on Artificial Intelligence, University of
British Columbia, August 1981.

[Teitelbaum 81) Teitelbaum, T., and R. Reps, “"The Cornell Program Synthesizer: A syntax-directed
programming environment," Communications of the ACM 24, (9), September 1981, 563-573.

[Teiteiman 78] Teitelman, W., Interlisp Reference Manual, Xerox Palo Alto Research Center, 1978.

[Waters 82] Waters, R. C., "The Programmer’s Apprentice: Knowledge based program editing,” IEEE
Transactions on Software Engir.eering 8, (1), January 1982, 1-12.

[Wile 82] Wile, D. S., POPART: Producer of Parsers and Related Tools, System Builder's Manual,
USC/Information Sciences Institute, TM-82-21, 1982,

[wulf 75) Wulf, W. A., R. K. Johnsson, C. B. Weinstock, S. O. Hobbs, and C. M. Geschke, The Design
of an Optimizing Compiler, American Elsevier, New York, 1975.

[Yonke 75] Yonke, M. D., A Knowledgeable, Language-independent System for Program
Construction and Modification, USC/Information Sciences Institute, Technical Report RR-75-42,
October 1975.

